Copied to
clipboard

G = C32.24He3order 243 = 35

1st central stem extension by C32 of He3

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C32.24He3, C33.1C32, C3.4C3≀C3, C32⋊C91C3, (C3×He3)⋊1C3, C3.3(He3⋊C3), SmallGroup(243,3)

Series: Derived Chief Lower central Upper central Jennings

C1C33 — C32.24He3
C1C3C32C33C3×He3 — C32.24He3
C1C32C33 — C32.24He3
C1C32C33 — C32.24He3
C1C32C33 — C32.24He3

Generators and relations for C32.24He3
 G = < a,b,c,d,e | a3=b3=c3=d3=e3=1, ab=ba, ac=ca, ad=da, ae=ea, dcd-1=bc=cb, bd=db, be=eb, ece-1=acd-1, ede-1=a-1d >

9C3
9C3
9C3
9C3
9C3
9C3
9C3
3C32
3C32
3C32
3C32
3C32
3C32
3C32
3C32
3C32
3C32
9C32
9C9
9C32
9C32
9C9
9C32
9C32
9C32
3He3
3C33
3C33
3He3
3C3×C9
3C3×C9
3He3
3He3
3He3
3He3

Smallest permutation representation of C32.24He3
On 81 points
Generators in S81
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)(55 56 57)(58 59 60)(61 62 63)(64 65 66)(67 68 69)(70 71 72)(73 74 75)(76 77 78)(79 80 81)
(1 14 10)(2 15 11)(3 13 12)(4 81 8)(5 79 9)(6 80 7)(16 23 19)(17 24 20)(18 22 21)(25 32 28)(26 33 29)(27 31 30)(34 41 37)(35 42 38)(36 40 39)(43 50 46)(44 51 47)(45 49 48)(52 59 55)(53 60 56)(54 58 57)(61 68 64)(62 69 65)(63 67 66)(70 77 73)(71 78 74)(72 76 75)
(1 3 2)(4 63 72)(5 61 70)(6 62 71)(7 65 74)(8 66 75)(9 64 73)(10 12 11)(13 15 14)(16 21 24)(17 19 22)(18 20 23)(25 31 29)(26 32 30)(27 33 28)(34 54 51)(35 52 49)(36 53 50)(37 57 44)(38 55 45)(39 56 43)(40 60 46)(41 58 47)(42 59 48)(67 76 81)(68 77 79)(69 78 80)
(1 25 16)(2 26 17)(3 27 18)(4 74 64)(5 75 65)(6 73 66)(7 77 67)(8 78 68)(9 76 69)(10 28 19)(11 29 20)(12 30 21)(13 31 22)(14 32 23)(15 33 24)(34 53 45)(35 54 43)(36 52 44)(37 56 48)(38 57 46)(39 55 47)(40 59 51)(41 60 49)(42 58 50)(61 81 71)(62 79 72)(63 80 70)
(1 61 34)(2 62 35)(3 63 36)(4 57 30)(5 55 28)(6 56 29)(7 60 33)(8 58 31)(9 59 32)(10 64 37)(11 65 38)(12 66 39)(13 67 40)(14 68 41)(15 69 42)(16 70 43)(17 71 44)(18 72 45)(19 73 46)(20 74 47)(21 75 48)(22 76 49)(23 77 50)(24 78 51)(25 79 52)(26 80 53)(27 81 54)

G:=sub<Sym(81)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (1,14,10)(2,15,11)(3,13,12)(4,81,8)(5,79,9)(6,80,7)(16,23,19)(17,24,20)(18,22,21)(25,32,28)(26,33,29)(27,31,30)(34,41,37)(35,42,38)(36,40,39)(43,50,46)(44,51,47)(45,49,48)(52,59,55)(53,60,56)(54,58,57)(61,68,64)(62,69,65)(63,67,66)(70,77,73)(71,78,74)(72,76,75), (1,3,2)(4,63,72)(5,61,70)(6,62,71)(7,65,74)(8,66,75)(9,64,73)(10,12,11)(13,15,14)(16,21,24)(17,19,22)(18,20,23)(25,31,29)(26,32,30)(27,33,28)(34,54,51)(35,52,49)(36,53,50)(37,57,44)(38,55,45)(39,56,43)(40,60,46)(41,58,47)(42,59,48)(67,76,81)(68,77,79)(69,78,80), (1,25,16)(2,26,17)(3,27,18)(4,74,64)(5,75,65)(6,73,66)(7,77,67)(8,78,68)(9,76,69)(10,28,19)(11,29,20)(12,30,21)(13,31,22)(14,32,23)(15,33,24)(34,53,45)(35,54,43)(36,52,44)(37,56,48)(38,57,46)(39,55,47)(40,59,51)(41,60,49)(42,58,50)(61,81,71)(62,79,72)(63,80,70), (1,61,34)(2,62,35)(3,63,36)(4,57,30)(5,55,28)(6,56,29)(7,60,33)(8,58,31)(9,59,32)(10,64,37)(11,65,38)(12,66,39)(13,67,40)(14,68,41)(15,69,42)(16,70,43)(17,71,44)(18,72,45)(19,73,46)(20,74,47)(21,75,48)(22,76,49)(23,77,50)(24,78,51)(25,79,52)(26,80,53)(27,81,54)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (1,14,10)(2,15,11)(3,13,12)(4,81,8)(5,79,9)(6,80,7)(16,23,19)(17,24,20)(18,22,21)(25,32,28)(26,33,29)(27,31,30)(34,41,37)(35,42,38)(36,40,39)(43,50,46)(44,51,47)(45,49,48)(52,59,55)(53,60,56)(54,58,57)(61,68,64)(62,69,65)(63,67,66)(70,77,73)(71,78,74)(72,76,75), (1,3,2)(4,63,72)(5,61,70)(6,62,71)(7,65,74)(8,66,75)(9,64,73)(10,12,11)(13,15,14)(16,21,24)(17,19,22)(18,20,23)(25,31,29)(26,32,30)(27,33,28)(34,54,51)(35,52,49)(36,53,50)(37,57,44)(38,55,45)(39,56,43)(40,60,46)(41,58,47)(42,59,48)(67,76,81)(68,77,79)(69,78,80), (1,25,16)(2,26,17)(3,27,18)(4,74,64)(5,75,65)(6,73,66)(7,77,67)(8,78,68)(9,76,69)(10,28,19)(11,29,20)(12,30,21)(13,31,22)(14,32,23)(15,33,24)(34,53,45)(35,54,43)(36,52,44)(37,56,48)(38,57,46)(39,55,47)(40,59,51)(41,60,49)(42,58,50)(61,81,71)(62,79,72)(63,80,70), (1,61,34)(2,62,35)(3,63,36)(4,57,30)(5,55,28)(6,56,29)(7,60,33)(8,58,31)(9,59,32)(10,64,37)(11,65,38)(12,66,39)(13,67,40)(14,68,41)(15,69,42)(16,70,43)(17,71,44)(18,72,45)(19,73,46)(20,74,47)(21,75,48)(22,76,49)(23,77,50)(24,78,51)(25,79,52)(26,80,53)(27,81,54) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54),(55,56,57),(58,59,60),(61,62,63),(64,65,66),(67,68,69),(70,71,72),(73,74,75),(76,77,78),(79,80,81)], [(1,14,10),(2,15,11),(3,13,12),(4,81,8),(5,79,9),(6,80,7),(16,23,19),(17,24,20),(18,22,21),(25,32,28),(26,33,29),(27,31,30),(34,41,37),(35,42,38),(36,40,39),(43,50,46),(44,51,47),(45,49,48),(52,59,55),(53,60,56),(54,58,57),(61,68,64),(62,69,65),(63,67,66),(70,77,73),(71,78,74),(72,76,75)], [(1,3,2),(4,63,72),(5,61,70),(6,62,71),(7,65,74),(8,66,75),(9,64,73),(10,12,11),(13,15,14),(16,21,24),(17,19,22),(18,20,23),(25,31,29),(26,32,30),(27,33,28),(34,54,51),(35,52,49),(36,53,50),(37,57,44),(38,55,45),(39,56,43),(40,60,46),(41,58,47),(42,59,48),(67,76,81),(68,77,79),(69,78,80)], [(1,25,16),(2,26,17),(3,27,18),(4,74,64),(5,75,65),(6,73,66),(7,77,67),(8,78,68),(9,76,69),(10,28,19),(11,29,20),(12,30,21),(13,31,22),(14,32,23),(15,33,24),(34,53,45),(35,54,43),(36,52,44),(37,56,48),(38,57,46),(39,55,47),(40,59,51),(41,60,49),(42,58,50),(61,81,71),(62,79,72),(63,80,70)], [(1,61,34),(2,62,35),(3,63,36),(4,57,30),(5,55,28),(6,56,29),(7,60,33),(8,58,31),(9,59,32),(10,64,37),(11,65,38),(12,66,39),(13,67,40),(14,68,41),(15,69,42),(16,70,43),(17,71,44),(18,72,45),(19,73,46),(20,74,47),(21,75,48),(22,76,49),(23,77,50),(24,78,51),(25,79,52),(26,80,53),(27,81,54)]])

C32.24He3 is a maximal subgroup of   C3.C3≀S3  C32⋊C9.S3  (C3×He3)⋊S3

35 conjugacy classes

class 1 3A···3H3I···3V9A···9L
order13···33···39···9
size11···19···99···9

35 irreducible representations

dim111333
type+
imageC1C3C3He3C3≀C3He3⋊C3
kernelC32.24He3C32⋊C9C3×He3C32C3C3
# reps14421212

Matrix representation of C32.24He3 in GL6(𝔽19)

1100000
0110000
0011000
0001100
0000110
0000011
,
700000
070000
007000
000100
000010
000001
,
700000
1810000
7011000
000700
000070
00011161
,
160000
0181000
0180000
0001110
0000110
0008157
,
946000
9010000
15410000
0007010
00015816
00013114

G:=sub<GL(6,GF(19))| [11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,18,7,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,11,0,0,0,0,7,16,0,0,0,0,0,1],[1,0,0,0,0,0,6,18,18,0,0,0,0,1,0,0,0,0,0,0,0,1,0,8,0,0,0,11,11,15,0,0,0,0,0,7],[9,9,15,0,0,0,4,0,4,0,0,0,6,10,10,0,0,0,0,0,0,7,15,13,0,0,0,0,8,11,0,0,0,10,16,4] >;

C32.24He3 in GAP, Magma, Sage, TeX

C_3^2._{24}{\rm He}_3
% in TeX

G:=Group("C3^2.24He3");
// GroupNames label

G:=SmallGroup(243,3);
// by ID

G=gap.SmallGroup(243,3);
# by ID

G:=PCGroup([5,-3,3,-3,-3,3,121,542,457]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*c*d^-1=b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=a*c*d^-1,e*d*e^-1=a^-1*d>;
// generators/relations

Export

Subgroup lattice of C32.24He3 in TeX

׿
×
𝔽